Web Appendix

Does Financial Inclusion Exclude? The Effect of Access to Savings on Informal Risk-Sharing in Kenya, Felipe Dizon, Erick Gong, and Kelly Jones (Version: May 2016)

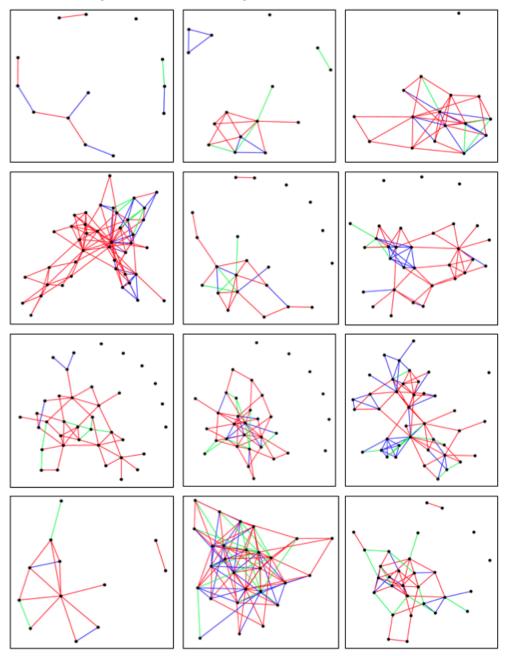
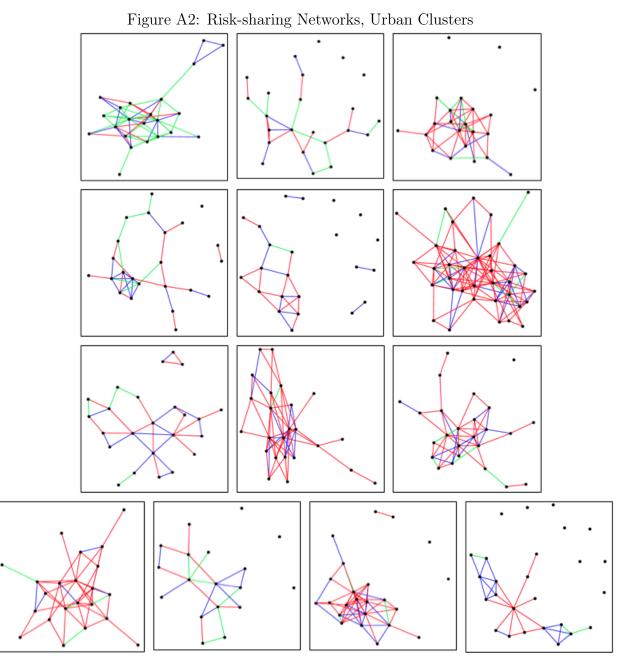



Figure A1: Risk-sharing Networks, Rural Clusters

Notes: Each image depicts the 12 rural geographic cluster risk-sharing networks. A red edge indicates a dyad that was risk-sharing only at baseline, a green edge indicates a dyad that was risk-sharing only at endline, and a blue edge indicates a dyad that was risk-sharing at both baseline and endline.

Notes: Each image depicts the 13 urban geographic cluster risk-sharing networks. A red edge indicates a dyad that was risk-sharing only at baseline, a green edge indicates a dyad that was risk-sharing only at endline, and a blue edge indicates a dyad that was risk-sharing at both baseline and endline.

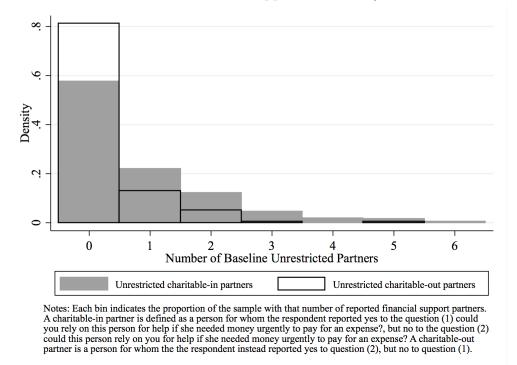
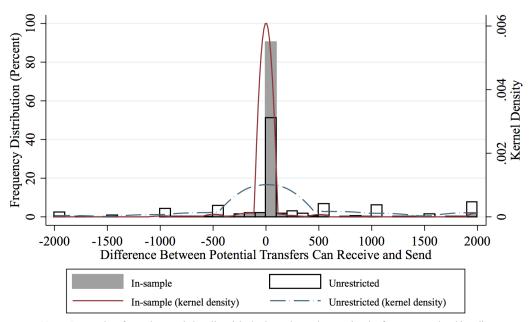



Figure A3: Number of Baseline Financial Support Partners (Unrestricted Charitable)

Figure A4: Net Potential Transfers for Baseline Risk-Sharing Pairs

Notes: In-sample refers to in-sample baseline risk-sharing pairs, and unrestricted refers to unrestricted baseline risk-sharing pairs. The frequency distributions refer to a truncated frequency distribution of 100Ksh bin width. The variables are truncated so that any value below (above) -2000 (2000) is replaced with -2000 (2000). The kernel density functions use the same truncated variables. Epanechnikov kernel is used with bandwidth=50 for in-sample pairs and bandwidth=100 for unrestricted pairs.

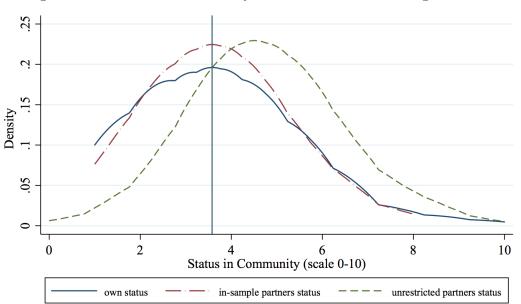


Figure A5: Status in Community for Baseline Risk-Sharing Partners

Notes: Presented above are kernel density estimates of the status in community at baseline for in-sample and unrestricted partners. Status in community is a subjective measure on a 10-point scale from the survey question: Now think of a ladder in which people in your community are ranked, with the highest status people on the top rung and the lowest status people on the bottom rung. On a ladder with 10 steps, on which step would you place yourself? The measure for an unrestricted partner j is reported by i, whereas the measure for an in-sample partner j is reported by the partner j herself.

(1)	(2)	(3)	(4)	(5)
Income,	Value of	Value of	Total	Total
past 7	non-livestock	livestock	savings	ROSCA
days	assets	assets	balance	balance
0.12	5.11^{***}	0.67	0.71^{***}	0.49***
(0.29)	(1.65)	(1.05)	(0.20)	(0.16)
570	570	570	570	570
579	579	579	579	579
0.03	13.91***	1.30	2.11^{***}	1.61**
(0.50)	(4.21)	(2.12)	(0.74)	(0.63)
579	579	579	579	579
	Income, past 7 days 0.12 (0.29) 579 0.03 (0.50)	Income, past 7 Value of non-livestock assets 0.12 5.11*** (0.29) (1.65) 579 579 0.03 13.91*** (0.50) (4.21)	$\begin{array}{c cccc} Income, & Value of & Value of \\ past 7 & non-livestock & livestock \\ days & assets & assets \\ \hline \\ 0.12 & 5.11^{***} & 0.67 \\ (0.29) & (1.65) & (1.05) \\ 579 & 579 & 579 \\ \hline \\ 0.03 & 13.91^{***} & 1.30 \\ (0.50) & (4.21) & (2.12) \\ \hline \end{array}$	$\begin{array}{c cccc} Income, & Value of & Value of & Total \\ past 7 & non-livestock & livestock & savings \\ days & assets & assets & balance \\ \hline \\ 0.12 & 5.11^{***} & 0.67 & 0.71^{***} \\ (0.29) & (1.65) & (1.05) & (0.20) \\ \hline \\ 579 & 579 & 579 & 579 \\ \hline \\ 0.03 & 13.91^{***} & 1.30 & 2.11^{***} \\ (0.50) & (4.21) & (2.12) & (0.74) \\ \hline \end{array}$

Table A1: Correlates of self-reported potential transfers one can send

Notes: Unit of observation is an individual *i*. The dependent variables are baseline measures of income, assets, and savings. In panel A, the independent variable is the total endline potential transfers one can send to risk-sharing partners. In panel B, the independent variable is the mean endline potential transfers one can send, averaged across the risk-sharing partners of individual *i*. Estimation procedure used is OLS with cluster-robust standard errors at the geographic cluster level. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Constant is included in all regressions, but not shown.

	(1)	(2)
	Net Potential Transfers	Net Potential Transfers
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-9.0	3.0
	(20.3)	(3.6)
$(\hat{\beta}_2) \ i \ \text{or} \ j \ \text{treatment}$	4.6	4.8
	(21.6)	(3.6)
Observations	1112	8241
Mean in Control	7.6	-0.5

Table A2: Treatment effect on the difference between potential transfers one can receive and send (undirectional)

Notes: Unit of observation is an undirectional dyad ij, where dependent variable is the difference between potential transfers one can receive and send. Sample in column 1 includes all dyads which were risk-sharing at baseline. Sample in column 2 includes all possible dyads within each geographic cluster. Estimation procedure used is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: absolute age difference between i and j, sum of age of i and j, geographic cluster fixed effects, and a constant.

	(1)	(2)	(3)	(4)
	Potential	Potential	Actual	Actual
	Transfers	Transfers	Transfers	Transfers
	Can Receive	Can Send	Received	Sent
Panel A: mean of i a	$nd \ j \ reports$			
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-116.1**	-110.5**	-20.3**	-7.6
	(53.7)	(50.2)	(10.1)	(7.6)
$(\hat{\beta}_2)$ <i>i</i> or <i>j</i> treatment	-73.9	-78.3*	-8.6	-0.3
	(47.2)	(43.1)	(10.8)	(8.0)
Observations	1112	1112	1112	1112
Mean in Control	219.9	219.0	28.3	19.0
Panel B: sum of i and	d j reports			
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-233.6**	-221.1**	-40.9**	-15.1
	(107.3)	(100.4)	(20.2)	(15.2)
$(\hat{\beta}_2) \ i \ \text{or} \ j \ \text{treatment}$	-149.9	-157.3^{*}	-18.3	-0.5
	(94.2)	(86.1)	(21.4)	(15.9)
Observations	1112	1112	1112	1112
Mean in Control	439.1	437.3	56.5	38.0

Table A3: Baseline risk-sharing dyads, undirectional: alternative specifications for dyad level outcome variable

Notes: Unit of observation is an undirectional dyad ij, where dependent variable is a measure of risk-sharing at endline. In panel A, we take the mean of the reports of i and j as the dyad-level observation. In panel B, we take the sum of the reports of i and j as the dyad-level observation. Sample includes all dyads which were risk-sharing at baseline. Estimation procedure used is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: absolute age difference between i and j, sum of age of i and j, geographic cluster fixed effects, and a constant.

				-
	(1)	(2)	(3)	(4)
	Potential	Potential	Actual	Actual
	Transfers	Transfers	Transfers	Transfers
	Can Receive	Can Send	Received	Sent
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-157.2**	-156.3**	-31.2**	-15.3
	(79.4)	(74.5)	(15.5)	(9.9)
$(\hat{\beta}_2)$ <i>i</i> treatment, <i>j</i> control	-120.3	-126.9^{*}	-14.3	-9.7
	(77.9)	(73.0)	(18.7)	(12.2)
$(\hat{\beta}_3)$ <i>i</i> control, <i>j</i> treatment	-99.5	-96.4	-12.2	13.9
	(64.4)	(58.8)	(17.8)	(16.8)
Observations	1292	1292	1292	1292
Mean in Control	329.6	322.3	44.3	26.9

Table A4: Baseline risk-sharing dyads: using directional dyadic regressions

Notes: Unit of observation is a directional dyad ij, where dependent variable is a measure of risk-sharing at endline. Sample includes all dyads which were risk-sharing at baseline. Estimation procedure used is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: absolute age difference between i and j, sum of age of i and j, geographic cluster fixed effects, and a constant.

	(1)	(2)	(3)	(4)
	Potential	Potential	Actual	Actual
	Transfers	Transfers	Transfers	Transfers
	Can Receive	Can Send	Received	Sent
Panel A: mean of <i>i</i> a	and j reports			
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-15.0*	-16.1**	-5.8**	-2.1*
	(8.7)	(8.2)	(2.3)	(1.3)
$(\hat{\beta}_2)$ <i>i</i> or <i>j</i> treatment	-11.4	-14.2*	-4.1*	-1.4
	(8.8)	(8.2)	(2.1)	(1.2)
Observations	8241	8241	8241	8241
Mean in Control	37.4	38.1	7.4	3.9
Panel B: sum of i and	d j reports			
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-30.1*	-32.3**	-11.5**	-4.2*
	(17.4)	(16.4)	(4.7)	(2.5)
$(\hat{\beta}_2)$ <i>i</i> or <i>j</i> treatment	-24.5	-29.6*	-8.4**	-2.9
	(17.5)	(16.3)	(4.3)	(2.4)
Observations	8241.0	8241.0	8241.0	8241.0
Mean in Control	74.6	76.1	14.9	7.8
mean in Control	74.0	10.1	14.9	1.0

Table A5: All dyads, undirectional: alternative specifications for dyad level outcome variable

Notes: Unit of observation is an undirectional dyad ij, where dependent variable is a measure of risk-sharing at endline. In panel A, we take the mean of the reports of i and j as the dyad-level observation. In panel B, we take the sum of the reports of i and j as the dyad-level observation. Sample includes all possible dyads within each geographic cluster. Estimation procedure used is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: absolute age difference between i and j, sum of age of i and j, geographic cluster fixed effects, and a constant.

	(1)	(2)	(3)	(4)
	Potential	Potential	Actual	Actual
	Transfers	Transfers	Transfers	Transfers
	Can Receive	Can Send	Received	Sent
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-15.8*	-17.0*	-6.3**	-2.3
	(9.5)	(8.9)	(2.6)	(1.4)
$(\hat{\beta}_2)$ <i>i</i> treatment, <i>j</i> control	-12.1	-14.9	-4.4	-2.6*
	(10.0)	(9.2)	(2.8)	(1.4)
$(\hat{\beta}_3)$ <i>i</i> control, <i>j</i> treatment	-13.7	-15.3*	-4.8**	-0.6
	(9.8)	(9.2)	(2.1)	(1.7)
Observations	15346	15346	15346	15346
Mean in Control	40.2	40.0	8.0	4.2

Table A6: All dyads: using directional dyadic regressions

Notes: Unit of observation is a directional dyad *ij*, where dependent variable is a measure of risk-sharing at endline. Sample includes all possible dyads within each geographic cluster. Estimation procedure used is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: absolute age difference between i and j, sum of age of i and j, geographic cluster fixed effects, and a constant.

	(1)	(2)	(3)	(4)	(5)	(6)
		Ou	tcome: 1	risk-sharing l	ink	
	Se	verance	Fo	rmation	Net.	formation
	OLS	Panel dyad	OLS	Panel dyad	OLS	Panel dyad
		fixed effects		fixed effects		fixed effects
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment	-0.025	-0.028	-0.006	-0.006	-0.007	-0.012
	(0.048)	(0.051)	(0.006)	(0.007)	(0.010)	(0.015)
$(\hat{\beta}_2) \ i \ \text{or} \ j \ \text{treatment}$	-0.023	-0.028	-0.005	-0.005	-0.006	-0.014
	(0.032)	(0.035)	(0.005)	(0.005)	(0.007)	(0.009)
Endline dummy		-0.692***		0.027^{***}		-0.067***
		(0.033)		(0.005)		(0.010)
Observations	1112	2224	7129	14258	8241	16482
Mean in Control	0.308	1.000	0.027	0.000	0.064	0.135

Table A7: All dyads, undirectional: test for formation and net formation of risk-sharing links using dyad fixed effects

Notes: In columns 1 and 2, sample includes all possible undirectional dyads within geographic cluster that were risk-sharing at baseline. In columns 3 and 4, sample includes all possible undirectional dyads within geographic cluster that were not risk-sharing at baseline. In columns 5 and 6, sample includes all possible undirectional dyads within geographic cluster. In columns 1, 3 and 5, the dependent variable indicates whether the ij dyad was risk-sharing at endline. Estimation procedure used is OLS with dyadic-robust standard errors. Included as regressors but not shown: age of i, age of j, geographic cluster fixed effects, and a constant. In columns 2, 4, and 6, the dependent variable indicates whether the ij dyad was risk-sharing at time t, where t is baseline or endline. Estimation procedure used is panel dyad fixed effects with two-way clustered standard errors at the *i*-level and *j*-level. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10.

	(1)	(2)	(3)
	Any	Any	Any
	Shock	Shock	Shock
		(for i)	(for j)
$(\hat{\beta}_1)$ <i>i</i> treatment	-0.01		
	(0.04)		
$(\hat{\beta}_1)$ <i>i</i> and <i>j</i> treatment		-0.00	-0.00
		(0.04)	(0.04)
$(\hat{\beta}_2)$ <i>i</i> treatment, <i>j</i> control		-0.00	0.00
		(0.04)	(0.00)
$(\hat{\beta}_3)$ <i>i</i> control, <i>j</i> treatment		0.00	0.00
		(0.00)	(0.04)
Observations	579	15346	14210
Mean in Control	0.45	0.44	0.44

Table A8: State-contingent transfers: test for treatment effect on shock experience

Notes: In column 1, unit of observation is an individual i. The dependent variable is an indicator of whether individual i experienced a shock in the 4-month period before endline. Estimation procedure is OLS with robust standard errors. Included as regressors but not shown: age, geographic cluster fixed effects, and a constant In columns 2 and 3, unit of observation is a directional dyad ij. The dependent variable is an indicator for whether individual i or j experienced a shock. Estimation procedure used is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Included as regressors but not shown: absolute age difference between i and j, sum of age of i and j, geographic cluster fixed effects, and a constant.

	(1)	(2)	(3)	(4)	(5)	(6)
	Number of	Total	Total	Number of	Total	Total
	people	potential	actual	people who	potential	actual
	respondent	transfers	transfers	can rely on	transfers	transfers
	can rely on	can receive	received	respondent	can send	sent
Panel A: sum a	cross all typ	es of unrest	ricted sup	oport partne	ers	
$(\hat{\beta}_1)$ <i>i</i> treatment	0.1	882.0	782.7*	0.1	618.1	119.4
	(0.2)	(762.3)	(420.0)	(0.2)	(485.1)	(273.6)
Observations	579	579	579	579	579	579
Mean in Control	4.0	6925.6	2584.4	2.8	3338.1	1582.7
Panel B: sum a	cross unrest	ricted risk-s	haring pa	rtners at en	dline	
$(\hat{\beta}_1)$ <i>i</i> treatment	0.2	861.8	362.3	0.2	661.7^{*}	247.5
	(0.2)	(702.7)	(289.1)	(0.2)	(367.1)	(161.6)
	· ·					
Observations	579	579	579	579	579	579
Mean in Control	3.3	5631.5	1934.0	1.9	2245.3	689.3

Table A9: Charitable support: unrestricted i-level regressions

Notes: Unit of observation is an individual i, In panel A, the dependent variable is the sum of a support measure across all types of unrestricted support partners. In panel B, the dependent variable is the sum of a support measure across unrestricted risk-sharing partners. Estimation procedure is OLS with robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: age of i, geographic cluster fixed effects, and a constant.

Table A10: Miscellaneous explanations: test for treatment-induced change in type of risksharing partners

	(1)	(2)	(3)	(4)
	Family	Same	Value of	Status in
	Member	Ethnicity	Assets	Community
$(\hat{\beta}_1)$ <i>i</i> treatment	0.00	-0.03	2737.02	0.08
	(0.04)	(0.03)	(6347.64)	(0.14)
Observations	317	317	309	309
Mean in Control	0.15	0.91	74247	3.77

Notes: Unit of observation is an individual *i*, The dependent variable is the mean of a given characteristic across in-sample risk-sharing partners. Estimation procedure is OLS with robust standard errors. Standard errors are shown in parentheses. Level of significance: *** p<0.01, ** p<0.05, * p<0.10. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: age, geographic cluster fixed effects, and a constant.

	(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)
	Domain:	Domain:	Domain:	Quantity:	Quantity:	Quantity:	Quantity:	Quantity:
	$\mathbf{Anxiety}$	Quality	Quantity	Smaller	Fewer	No Food	Sleep	Not Eat
				Meals	Meals	At Home	Hungry	Full Day
$(\hat{\delta_1})$ i and j treatment and i shock=1	-0.07	-0.02	-0.11^{**}	-0.23**	-0.38***	-0.12	-0.03	-0.01
	(0.06)	(0.05)	(0.05)	(0.12)	(0.12)	(0.0)	(0.08)	(0.09)
$(\hat{\delta}_2)$ <i>i</i> treatment, <i>j</i> control, and <i>i</i> shock=1	-0.07	-0.02	-0.11^{**}	-0.24^{**}	-0.39***	-0.12	-0.04	-0.01
	(0.06)	(0.05)	(0.06)	(0.12)	(0.12)	(0.10)	(0.00)	(0.09)
$(\hat{\delta_3})$ <i>i</i> control, <i>j</i> treatment, and <i>i</i> shock=1	-0.00	0.00	-0.00	-0.01	-0.01	-0.00	-0.01	-0.01
	(0.01)	(0.01)	(0.00)	(0.01)	(0.01)	(0.02)	(0.02)	(0.01)
$(\hat{\delta_4})$ i and j treatment and i shock=0	-0.03	0.04	0.05	0.04	0.11	0.05	0.13^{*}	0.05
	(0.06)	(0.05)	(0.05)	(0.10)	(0.10)	(0.08)	(0.07)	(0.07)
$(\hat{\delta}_5)$ <i>i</i> treatment, <i>j</i> control, and <i>i</i> shock=0	-0.03	0.04	0.05	0.04	0.12	0.05	0.13^{*}	0.05
	(0.06)	(0.05)	(0.05)	(0.10)	(0.10)	(0.08)	(0.01)	(0.08)
$(\hat{\delta_6})$ <i>i</i> control, <i>j</i> treatment, and <i>i</i> shock=0	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00
	(0.01)	(0.01)	(0.00)	(0.01)	(0.01)	(0.02)	(0.01)	(0.02)
$(\hat{\delta_{ au}}) i { m shock}{=} 1$	0.17^{***}	0.17^{***}	0.24^{***}	0.33^{***}	0.51^{***}	0.23^{**}	0.20^{***}	0.14^{*}
	(0.06)	(0.05)	(0.05)	(0.11)	(0.12)	(0.10)	(0.08)	(0.08)
χ^2 test $(\delta_1) = (\delta_4)$, p-value	0.65	0.46	0.04	0.09	0.00	0.20	0.14	0.62
$\chi^2 ext{ test } (\delta_2) = (\delta_5), ext{ p-value}$	0.62	0.40	0.04	0.08	0.00	0.21	0.13	0.63
χ^2 test $(\delta_3) = (\delta_6)$, p-value	0.76	0.98	0.25	0.27	0.31	0.98	0.71	0.75
Observations	15346	15346	15346	15346	15346	15346	15346	15346
Mean in Control, i shock=1	0.65	0.76	0.68	1.04	1.13	0.58	0.43	0.35
Notes: Unit of observation is a directional dyad ij , where dependent variable is a welfare measure for individual i . Sample includes all possible dyads within each geographic cluster. Estimation procedure used is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level of significance: *** $p<0.01$, ** $p<0.05$, * $p<0.10$. Values are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included as regressors but not shown: baseline outcome variable, absolute age difference between i and j , sum of age of i and j , geographic cluster fixed effects, and a constant.	d ij , where de_{1} cedure used is 10. Values are variable, abso	pendent variah OLS with dya reported in K lute age differ	e dependent variable is a welfare measure for individual i . Sample includes all possible dyads ed is OLS with dyadic-robust standard errors. Standard errors are shown in parentheses. Level s are reported in Kenyan Shillings (Ksh), 85 Ksh = 1 USD at the time of the study. Included absolute age difference between i and j , sum of age of i and j , geographic cluster fixed effects,	measure for idard errors. is (Ksh) , 85 K and j , sum c	individual i . Standard errc csh = 1 USD f age of i and	Sample incluors are shown at the time of l j , geographi	Sample includes all possible dyads are shown in parentheses. Level at the time of the study. Included 1 j, geographic cluster fixed effects,	e dyads s. Level acluded effects,

Table A11: Welfare effects: components of the HFIAS